Hexagonal limits#

Note

Available with mpltern>=1.0.0

Suppose we would like to crop or expand the following gray-shaded region.

../../_images/01-hexagonal_limits-1.svg

The region is defined as the intersect of \(t \in [0.1, 0.7]\), \(l \in [0.1, 0.7]\), \(r \in [0.1, 0.7]\).

../../_images/01-hexagonal_limits-2.svg

Using set_ternary_lim, we explicitly specify the min and the max values for all the ternary axes.

import matplotlib.pyplot as plt
from mpltern.datasets import get_spiral

ax = plt.subplot(projection='ternary')

ax.plot(*get_spiral(), color="k")

ax.set_ternary_lim(
    0.1, 0.7,  # tmin, tmax
    0.1, 0.7,  # lmin, lmax
    0.1, 0.7,  # rmin, rmax
)

ax.set_tlabel("T")
ax.set_llabel("L")
ax.set_rlabel("R")

# For a hexagonal plotting region, it may be better to put the axis labels on
# the sides (either "tick1" or "tick2") rather than the default "corner" to
# avoid confusion.
ax.taxis.set_label_position("tick1")
ax.laxis.set_label_position("tick1")
ax.raxis.set_label_position("tick1")

plt.show()
01.hexagonal limits

We can also set the min and the max values of each ternary axis one by one.

ax = plt.subplot(projection='ternary')

ax.plot(*get_spiral(), color="k")

ax.set_tlim(0.1, 0.7)
ax.set_llim(0.1, 0.7)
ax.set_rlim(0.1, 0.7)

plt.show()
01.hexagonal limits

Total running time of the script: (0 minutes 1.888 seconds)

Gallery generated by Sphinx-Gallery